Business Data Analytics: Application and Tools
- Type: Vorlesung (V)
- Semester: SS 2019
-
Time:
2019-04-29
09:45 - 11:15 wöchentlich
20.30 SR 0.019
20.30 Kollegiengebäude Mathematik, Englerstr. 2
2019-05-06
09:45 - 11:15 wöchentlich
20.30 SR 0.019
20.30 Kollegiengebäude Mathematik, Englerstr. 2
2019-05-13
09:45 - 11:15 wöchentlich
20.30 SR 0.019
20.30 Kollegiengebäude Mathematik, Englerstr. 2
2019-05-20
09:45 - 11:15 wöchentlich
20.30 SR 0.019
20.30 Kollegiengebäude Mathematik, Englerstr. 2
2019-05-27
09:45 - 11:15 wöchentlich
20.30 SR 0.019
20.30 Kollegiengebäude Mathematik, Englerstr. 2
2019-06-03
09:45 - 11:15 wöchentlich
20.30 SR 0.019
20.30 Kollegiengebäude Mathematik, Englerstr. 2
2019-06-17
09:45 - 11:15 wöchentlich
20.30 SR 0.019
20.30 Kollegiengebäude Mathematik, Englerstr. 2
2019-06-24
09:45 - 11:15 wöchentlich
20.30 SR 0.019
20.30 Kollegiengebäude Mathematik, Englerstr. 2
2019-07-01
09:45 - 11:15 wöchentlich
20.30 SR 0.019
20.30 Kollegiengebäude Mathematik, Englerstr. 2
2019-07-08
09:45 - 11:15 wöchentlich
20.30 SR 0.019
20.30 Kollegiengebäude Mathematik, Englerstr. 2
2019-07-15
09:45 - 11:15 wöchentlich
20.30 SR 0.019
20.30 Kollegiengebäude Mathematik, Englerstr. 2
2019-07-22
09:45 - 11:15 wöchentlich
20.30 SR 0.019
20.30 Kollegiengebäude Mathematik, Englerstr. 2
-
Lecturer:
Prof. Dr. Christof Weinhardt
David Dann
Philipp Staudt - SWS: 2
- Lv-No.: 2540466
Prerequisites | Prior knowledge of object oriented programming and statistics is recommended. |
Description | The ongoing digitalization and digitization of businesses, industries and societies is generating vast amounts of data. Hence, researchers and businesses are facing increasing pressure to build capabilities to cope with the data and generate value from the contained but yet to be discovered knowledge, insights and information. Researchers and practitioners tackling this task are referred to as data scientists and need skills at the intersection of programming, statistics and development operations. This course provides a hands-on perspective on these fields. |
Content of teaching | The aim of this course is to introduce practical foundations, concepts, tools and current practice of Analytics from a data scientist’s perspective. The lecture is complemented with an Analytics challenge that is based on real-world data from research projects. The students immediately apply their newly acquired knowledge and learn to use a range of open source tools to solve the challenge. Content:
|
Workload | The total workload for this course is approximately 135 hours. |
Aim | The students
|